Abstract
The encapsulation of lead halide perovskite nanocrystals (PNCs) with an inert protective layer against moisture and the environment is a promising approach to overcome hinderances for their practical use in optoelectronic and biomedical applications. Herein, a facile method for synthesizing highly luminescent and biocompatible CsPbBr3@SiO2 core-shell PNCs with a controlled SiO2 thickness, which are suitable for both cell imaging and drug delivery, is reported. The synthesized CsPbBr3@SiO2 core-shell PNCs exhibit bright green emission at 518 nm upon excitation of 374 nm. Interestingly, a significant increase in the photoluminescence intensity is observed with an increase in the SiO2 shell thickness, which varies with the increasing reaction time. Cytotoxicity results indicate that the CsPbBr3@SiO2 core-shell PNCs are nontoxic, making them suitable for in vitro cell imaging using HeLa cells. Furthermore, doxorubicin physically adsorbed on the surface of CsPbBr3@SiO2 core-shell PNCs is efficiently released in cells when the drug-loaded perovskite nanoprobes are injected in the cells, indicating that these core-shell nanoparticles can be used for drug loading and delivery. The results of this study suggest that the CsPbBr3@SiO2 core-shell PNCs can pave the way for new biomedical applications and processes.
Original language | English |
---|---|
Pages (from-to) | 10337-10345 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry B |
Volume | 8 |
Issue number | 45 |
DOIs | |
Publication status | Published - 2020 Dec 7 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biomedical Engineering
- Materials Science(all)