Highly Efficient Pure-Blue Perovskite Light-Emitting Diode Leveraging CsPbBrxCl3−x/Cs4PbBrxCl6−x Nanocomposite Emissive Layer with Shallow Valence Band

In Young Choi, Sung Doo Baek, Ashkan Vakilipour Takaloo, Seung Yong Lee, Amir Hajibabaei, Kwang S. Kim, Jae Min Myoung

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Metal-halide perovskite light-emitting diodes (PeLEDs) have shown great advancement in green, red, and near-infrared regions with external quantum efficiencies (EQEs) exceeding 20%. However, blue PeLEDs, an essential part of displays and lightings, show limited progress compared to the other color counterparts. Herein, a highly efficient pure-blue PeLED is demonstrated by leveraging a novel CsPbBrxCl3-x/Cs4PbBrxCl6-x nanocomposite perovskite film as an emissive layer. The Cs4PbBrxCl6-x phase, the derived phase of CsPbBr3 perovskite with a mixed halide system, effectively passivates defects in CsPbBrxCl3-x, leading to high luminescence efficiency due to the significant reduction of nonradiative recombination. Furthermore, experimental and computational results confirmed that the compositionally optimized nanocomposite layer possesses a shallower valence band maximum (≈5.5 eV) than the pristine perovskite layer (≈5.9 eV), which is very advantageous in hole injection for device operation. The combined effects of the CsPbBrxCl3-x/Cs4PbBrxCl6-x nanocomposite render the fabricated blue PeLED to exhibit a pure-blue emission at 470 nm with a maximum EQE of 5.3%.

Original languageEnglish
Article number2102502
JournalAdvanced Optical Materials
Volume10
Issue number6
DOIs
Publication statusPublished - 2022 Mar 18

Bibliographical note

Publisher Copyright:
© 2022 Wiley-VCH GmbH

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Highly Efficient Pure-Blue Perovskite Light-Emitting Diode Leveraging CsPbBrxCl3−x/Cs4PbBrxCl6−x Nanocomposite Emissive Layer with Shallow Valence Band'. Together they form a unique fingerprint.

Cite this