Abstract
Laser speckle can provide a powerful tool that may be used for metrology, for example measurements of the incident laser wavelength with a resolution beyond that which may be achieved in a commercial device. However, to realise highest resolution requires advanced multi-variate analysis techniques, which limit the acquisition rate of such a wavemeter. Here we show an arithmetically simple method to measure wavelength changes with dynamic speckle, based on a Poincarè descriptor of the speckle pattern. We demonstrate the measurement of wavelength changes at femtometer-level with a measurement time reduced by two orders of magnitude compared to the previous state-of-the-art, which offers promise for applications such as speckle-based laser wavelength stabilisation.
Original language | English |
---|---|
Article number | 124906 |
Journal | Optics Communications |
Volume | 459 |
DOIs | |
Publication status | Published - 2020 Mar 15 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering