Abstract
This study aimed a high-rate dark fermentative H2 production from xylose using a dynamic membrane module bioreactor (DMBR) with a 444-μm pore polyester mesh. 20 g xylose/L was fed continuously to the DMBR at different hydraulic retention times (HRTs) from 12 to 3 h at 37 °C. The maximum average H2 yield (HY) and H2 production rate (HPR) at 3 h HRT were found to be 1.40 ± 0.07 mol H2/mol xyloseconsumed and 30.26 ± 1.19 L H2/L-d, respectively. The short HRT resulted in the maximum suspended biomass concentration (8.92 ± 0.40 g VSS/L) along with significant attached biomass retention (7.88 ± 0.22 g VSS/L). H2 was produced by both butyric and acetic acid pathways. Low HY was concurrent with lactic acid production. The bacterial population shifted from non-H2 producers, such as Lactobacillus and Sporolactobacillus spp., to Clostridium sp., when HY increased. Thus, xylose from lignocellulose is a feasible substrate for dark fermentative H2 production using DMBR.
Original language | English |
---|---|
Article number | 126205 |
Journal | Bioresource technology |
Volume | 344 |
DOIs | |
Publication status | Published - 2022 Jan |
Bibliographical note
Funding Information:The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science & ICT) (No. NRF-2019M3E6A1103839, 2020R1A2B5B02001757).
Publisher Copyright:
© 2021 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Bioengineering
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal