High-Pressure Phase Transitions of Morphologically Distinct Zn2SnO4 Nanostructures

Partha Pratim Das, P. Sujatha Devi, Douglas A. Blom, Thomas Vogt, Yongjae Lee

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Many aspects of nanostructured materials at high pressures are still unexplored. We present here, high-pressure structural behavior of two Zn2SnO4 nanomaterials with inverse spinel type, one a particle with size of ∼7 nm [zero dimensional (0-D)] and the other with a chain-like [one dimensional (1-D)] morphology. We performed in situ micro-Raman and synchrotron X-ray diffraction measurements and observed that the cation disordering of the 0-D nanoparticle is preserved up to ∼40 GPa, suppressing the reported martensitic phase transformation. On the other hand, an irreversible phase transition is observed from the 1-D nanomaterial into a new and dense high-pressure orthorhombic CaFe2O4-type structure at ∼40 GPa. The pressure-treated 0-D and 1-D nanomaterials have distinct diffuse reflectance and emission properties. In particular, a heterojunction between the inverse spinel and quenchable orthorhombic phases allows the use of 1-D Zn2SnO4 nanomaterials as efficient photocatalysts as shown by the degradation of the textile pollutant methylene blue.

Original languageEnglish
Pages (from-to)10539-10547
Number of pages9
JournalACS Omega
Volume4
Issue number6
DOIs
Publication statusPublished - 2019 Jun 18

Bibliographical note

Publisher Copyright:
© 2019 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint

Dive into the research topics of 'High-Pressure Phase Transitions of Morphologically Distinct Zn2SnO4 Nanostructures'. Together they form a unique fingerprint.

Cite this