TY - JOUR
T1 - High level of real urban air pollution promotes cardiac arrhythmia in healthy mice
AU - Park, Hyewon
AU - Lim, Sangchul
AU - Lee, Seunghoon
AU - Mun, Dasom
AU - Kang, Ji Young
AU - Kim, Hyoeun
AU - Park, Hyelim
AU - Kim, Changsoo
AU - Park, Sunho
AU - Lim, Yeong Min
AU - Joung, Boyoung
N1 - Publisher Copyright:
Copyright © 2021. The Korean Society of Cardiology.
PY - 2021/2
Y1 - 2021/2
N2 - Background and Objectives: Ambient particulate matter (PM) in real urban air pollution (RUA) is an environmental health risk factor associated with increased cardiac events. This study investigated the threshold level to induce arrhythmia, as well as arrhythmogenic mechanism of RUA that mainly consisted of PM <2.5 μm in aerodynamic diameter close to ultrafine particles. Methods: RUA was artificially produced by a lately developed pyrolysis based RUA generator. C57BL/6 mice were divided into 4 groups: a control group (control, n=12) and three groups with exposure to RUA with the concentration of 200 µg/m3 (n=12), 400 µg/m3 (n=12), and 800 µg/m3 (n=12). Mice were exposed to RUA at each concentration for 8 hr/day and 5 day/week to mimic ordinary human activity during 3 weeks. Results: The QRS and QTc intervals, as well as intracellular Ca2+ duration, apicobasal action potential duration (APD) gradient, fibrosis, and inflammation of left ventricle of mouse hearts were increased dose-dependently with the increase of RUA concentration, and significantly increased at RUA concentration of 400 µg/m3 compared to control (all p<0.001). In mice exposed to RUA concentration of 800 µg/m3, spontaneous ventricular arrhythmia was observed in 42%, with significant increase of inflammatory markers, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phospholamban (PLB) compared to control. Conclusions: RUA could induce electrophysiological changes such as APD and QT prolongation, fibrosis, and inflammation dose-dependently, with significant increase of ventricular arrhythmia at the concentration of 400 µg/m3. RUA concentration of 800 µg/m3 increased phosphorylation of CaMKII and PLB.
AB - Background and Objectives: Ambient particulate matter (PM) in real urban air pollution (RUA) is an environmental health risk factor associated with increased cardiac events. This study investigated the threshold level to induce arrhythmia, as well as arrhythmogenic mechanism of RUA that mainly consisted of PM <2.5 μm in aerodynamic diameter close to ultrafine particles. Methods: RUA was artificially produced by a lately developed pyrolysis based RUA generator. C57BL/6 mice were divided into 4 groups: a control group (control, n=12) and three groups with exposure to RUA with the concentration of 200 µg/m3 (n=12), 400 µg/m3 (n=12), and 800 µg/m3 (n=12). Mice were exposed to RUA at each concentration for 8 hr/day and 5 day/week to mimic ordinary human activity during 3 weeks. Results: The QRS and QTc intervals, as well as intracellular Ca2+ duration, apicobasal action potential duration (APD) gradient, fibrosis, and inflammation of left ventricle of mouse hearts were increased dose-dependently with the increase of RUA concentration, and significantly increased at RUA concentration of 400 µg/m3 compared to control (all p<0.001). In mice exposed to RUA concentration of 800 µg/m3, spontaneous ventricular arrhythmia was observed in 42%, with significant increase of inflammatory markers, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phospholamban (PLB) compared to control. Conclusions: RUA could induce electrophysiological changes such as APD and QT prolongation, fibrosis, and inflammation dose-dependently, with significant increase of ventricular arrhythmia at the concentration of 400 µg/m3. RUA concentration of 800 µg/m3 increased phosphorylation of CaMKII and PLB.
KW - Air pollution
KW - Arrhythmia
KW - Fibrosis
KW - Inflammation
UR - http://www.scopus.com/inward/record.url?scp=85098084393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098084393&partnerID=8YFLogxK
U2 - 10.4070/KCJ.2020.0255
DO - 10.4070/KCJ.2020.0255
M3 - Article
AN - SCOPUS:85098084393
SN - 1738-5520
VL - 51
JO - Korean Circulation Journal
JF - Korean Circulation Journal
M1 - e6
ER -