TY - JOUR
T1 - High-dose helical tomotherapy with concurrent full-dose chemotherapy for locally advanced pancreatic cancer
AU - Chang, Jee Suk
AU - Wang, Michael L.C.
AU - Koom, Woong Sub
AU - Yoon, Hong In
AU - Chung, Yoonsun
AU - Song, Si Young
AU - Seong, Jinsil
PY - 2012/8/1
Y1 - 2012/8/1
N2 - Purpose: To improve poor therapeutic outcome of current practice of chemoradiotherapy (CRT), high-dose helical tomotherapy (HT) with concurrent full-dose chemotherapy has been performed on patients with locally advanced pancreatic cancer (LAPC), and the results were analyzed. Methods and Materials: We retrospectively reviewed 39 patients with LAPC treated with radiotherapy using HT (median, 58.4 Gy; range, 50.8-59.9 Gy) and concomitant chemotherapy between 2006 and 2009. Radiotherapy was directed to the primary tumor with a 0.5-cm margin without prophylactic nodal coverage. Twenty-nine patients (79%) received full-dose (1000 mg/m2) gemcitabine-based chemotherapy during HT. After completion of CRT, maintenance chemotherapy was administered to 37 patients (95%). Results: The median follow-up was 15.5 months (range, 3.4-43.9) for the entire cohort, and 22.5 months (range, 12.0-43.9) for the surviving patients. The 1- and 2-year local progression-free survival rates were 82.1% and 77.3%, respectively. Eight patients (21%) were converted to resectable status, including 1 with a pathological complete response. The median overall survival and progression-free survival were 21.2 and 14.0 months, respectively. Acute toxicities were acceptable with no gastrointestinal (GI) toxicity higher than Grade 3. Severe late GI toxicity (≥Grade 3) occurred in 10 patients (26%); 1 treatment-related death from GI bleeding was observed. Conclusion: High-dose helical tomotherapy with concurrent full-dose chemotherapy resulted in improved local control and long-term survival in patients with LAPC. Future studies are needed to widen the therapeutic window by minimizing late GI toxicity.
AB - Purpose: To improve poor therapeutic outcome of current practice of chemoradiotherapy (CRT), high-dose helical tomotherapy (HT) with concurrent full-dose chemotherapy has been performed on patients with locally advanced pancreatic cancer (LAPC), and the results were analyzed. Methods and Materials: We retrospectively reviewed 39 patients with LAPC treated with radiotherapy using HT (median, 58.4 Gy; range, 50.8-59.9 Gy) and concomitant chemotherapy between 2006 and 2009. Radiotherapy was directed to the primary tumor with a 0.5-cm margin without prophylactic nodal coverage. Twenty-nine patients (79%) received full-dose (1000 mg/m2) gemcitabine-based chemotherapy during HT. After completion of CRT, maintenance chemotherapy was administered to 37 patients (95%). Results: The median follow-up was 15.5 months (range, 3.4-43.9) for the entire cohort, and 22.5 months (range, 12.0-43.9) for the surviving patients. The 1- and 2-year local progression-free survival rates were 82.1% and 77.3%, respectively. Eight patients (21%) were converted to resectable status, including 1 with a pathological complete response. The median overall survival and progression-free survival were 21.2 and 14.0 months, respectively. Acute toxicities were acceptable with no gastrointestinal (GI) toxicity higher than Grade 3. Severe late GI toxicity (≥Grade 3) occurred in 10 patients (26%); 1 treatment-related death from GI bleeding was observed. Conclusion: High-dose helical tomotherapy with concurrent full-dose chemotherapy resulted in improved local control and long-term survival in patients with LAPC. Future studies are needed to widen the therapeutic window by minimizing late GI toxicity.
UR - http://www.scopus.com/inward/record.url?scp=84863608085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863608085&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2011.10.050
DO - 10.1016/j.ijrobp.2011.10.050
M3 - Article
C2 - 22285669
AN - SCOPUS:84863608085
SN - 0360-3016
VL - 83
SP - 1448
EP - 1454
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 5
ER -