Abstract
The low initial coulombic efficiency of a Si-based anode can hinder the performance of practical full-cell Li-ion batteries (LIBs), as the irreversible capacity loss of the anode can diminish the reversible full-cell capacity and the energy efficiency. Therefore, it is critical to develop high-coulombic-efficiency Si-based anode materials from a practical perspective. To this end, we developed a high-coulombic-efficiency Si-based hybrid anode material with suitable cycling performance by developing a spray-assisted assembly process based on a combination of graphene and ionic liquid (IL). During the assembly process, the IL was trapped between the graphene and Si nanoparticles. Then, it was easily converted into IL-derived carbon, to generate additional protective/binding layers in the resultant Si-based hybrid microspheres. This IL-derived carbon layer played an important role in improving the electrochemical performance of the Si-based hybrid microspheres. The resultant Si-based hybrid microsphere electrode exhibited enhanced initial coulombic efficiency along with improved cycling performance, owing to the formation of the protective/binding carbon layers derived from the IL.
Original language | English |
---|---|
Pages (from-to) | 20935-20943 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry A |
Volume | 3 |
Issue number | 42 |
DOIs | |
Publication status | Published - 2015 Jul 27 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)