Abstract
The joint optimization of representation learning and clustering in the embedding space has experienced a breakthrough in recent years. In spite of the advance, clustering with representation learning has been limited to flat-level categories, which often involves cohesive clustering with a focus on instance relations. To overcome the limitations of flat clustering, we introduce hierarchically-clustered representation learning (HCRL), which simultaneously optimizes representation learning and hierarchical clustering in the embedding space. Compared with a few prior works, HCRL firstly attempts to consider a generation of deep embeddings from every component of the hierarchy, not just leaf components. In addition to obtaining hierarchically clustered embeddings, we can reconstruct data by the various abstraction levels, infer the intrinsic hierarchical structure, and learn the level-proportion features. We conducted evaluations with image and text domains, and our quantitative analyses showed competent likelihoods and the best accuracies compared with the baselines.
Original language | English |
---|---|
Title of host publication | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
Publisher | AAAI press |
Pages | 5776-5783 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358350 |
DOIs | |
Publication status | Published - 2020 |
Event | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States Duration: 2020 Feb 7 → 2020 Feb 12 |
Publication series
Name | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
---|
Conference
Conference | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 |
---|---|
Country/Territory | United States |
City | New York |
Period | 20/2/7 → 20/2/12 |
Bibliographical note
Publisher Copyright:© 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
All Science Journal Classification (ASJC) codes
- Artificial Intelligence