TY - JOUR
T1 - Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS2 nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water
AU - Reddy, D. Amaranatha
AU - Choi, Jiha
AU - Lee, Seunghee
AU - Kim, Yujin
AU - Hong, Sangyeob
AU - Kumar, D. Praveen
AU - Kim, Tae Kyu
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016
Y1 - 2016
N2 - Commercial applications of sustainable photocatalytic hydrogen production via water-splitting, an important future source of renewable energy, are hindered by the high price and scarcity of the requisite noble metal co-catalysts. This problem could be overcome by developing highly active and durable noble-metal-free photocatalysts. Herein, a new solar-light-active noble-metal-free catalyst featuring dandelion-flower-like cobalt-phosphide embedded with CdS nanostructures grown on reduced graphene oxide (RGO)-MoS2 nanosheets was designed, and its photocatalytic hydrogen production activity was evaluated in water under simulated sunlight irradiation using lactic acid as a sacrificial reagent. The results show that the optimized CdS/RGO-MoS2@CoP photocatalyst exhibited an efficient H2 production rate of 83 907 μmol h-1 g-1 with an apparent quantum efficiency of 22.5%, far exceeding those of bare CdS (1053 μmol h-1 g-1), CdS-RGO (12 177 μmol h-1 g-1), CdS-RGO-MoS2 (29 268 μmol h-1 g-1), CdS:CoP (32 606 μmol h-1 g-1), CdS/CoP-RGO (54 259 μmol h-1 g-1) and CdS:Pt (12 478 μmol h-1 g-1) nanostructures. The proposed mechanism for the enhancement of the photocatalytic hydrogen evaluation rate of CdS/MoS2-RGO@CoP is based on the efficient separation of photogenerated electron-hole pairs. In the nanocomposite, the wrapped RGO nanosheets serve as good electron collectors and transporters. Meanwhile, the MoS2 and CoP nanostructures serve as a co-catalyst and electron acceptor, respectively, for the effective separation of the photo-charge carrier from the bare nanostructures, thereby decreasing the probability of electron-hole recombination at the interface of the nanocomposites and further stimulating the surface H2-evolution kinetics. We believe that this work provides invaluable information for the design of new, efficient sunlight-active noble-metal-free photocatalysts for hydrogen production through water-splitting.
AB - Commercial applications of sustainable photocatalytic hydrogen production via water-splitting, an important future source of renewable energy, are hindered by the high price and scarcity of the requisite noble metal co-catalysts. This problem could be overcome by developing highly active and durable noble-metal-free photocatalysts. Herein, a new solar-light-active noble-metal-free catalyst featuring dandelion-flower-like cobalt-phosphide embedded with CdS nanostructures grown on reduced graphene oxide (RGO)-MoS2 nanosheets was designed, and its photocatalytic hydrogen production activity was evaluated in water under simulated sunlight irradiation using lactic acid as a sacrificial reagent. The results show that the optimized CdS/RGO-MoS2@CoP photocatalyst exhibited an efficient H2 production rate of 83 907 μmol h-1 g-1 with an apparent quantum efficiency of 22.5%, far exceeding those of bare CdS (1053 μmol h-1 g-1), CdS-RGO (12 177 μmol h-1 g-1), CdS-RGO-MoS2 (29 268 μmol h-1 g-1), CdS:CoP (32 606 μmol h-1 g-1), CdS/CoP-RGO (54 259 μmol h-1 g-1) and CdS:Pt (12 478 μmol h-1 g-1) nanostructures. The proposed mechanism for the enhancement of the photocatalytic hydrogen evaluation rate of CdS/MoS2-RGO@CoP is based on the efficient separation of photogenerated electron-hole pairs. In the nanocomposite, the wrapped RGO nanosheets serve as good electron collectors and transporters. Meanwhile, the MoS2 and CoP nanostructures serve as a co-catalyst and electron acceptor, respectively, for the effective separation of the photo-charge carrier from the bare nanostructures, thereby decreasing the probability of electron-hole recombination at the interface of the nanocomposites and further stimulating the surface H2-evolution kinetics. We believe that this work provides invaluable information for the design of new, efficient sunlight-active noble-metal-free photocatalysts for hydrogen production through water-splitting.
UR - http://www.scopus.com/inward/record.url?scp=84981354100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84981354100&partnerID=8YFLogxK
U2 - 10.1039/c6cy00768f
DO - 10.1039/c6cy00768f
M3 - Article
AN - SCOPUS:84981354100
SN - 2044-4753
VL - 6
SP - 6197
EP - 6206
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 16
ER -