Hexadecaphyrin-(1.0.0.0.1.1.0.1.1.0.0.0.1.1.0.1): A Dual Site Ligand That Supports Thermal Conformational Changes

Gonzalo Anguera, Won Young Cha, Matthew D. Moore, Juhoon Lee, Shenyi Guo, Vincent M. Lynch, Dongho Kim, Jonathan L. Sessler

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

A new expanded porphyrin, hexadecaphyrin-(1.0.0.0.1.1.0.1.1.0.0.0.1.1.0.1), is reported. It was obtained via the condensation of a hexapyrrolic derivative prepared in turn from a bipyrrole dialdehyde and a stable quaterpyrrole precursor. This hexadecaphyrin contains eight direct α-pyrrole-to-α-pyrrole linkages in its structure. It supports the formation of bimetallic complexes of both zinc and cobalt that are characterized by different conformational structures. Furthermore, a mixed zinc/cobalt macrocycle has been prepared. The cobalt bimetallic complex shows two stable conformations with the same oxidation state that are in equilibrium. All compounds have been characterized by common spectroscopic means, and single crystal X-ray diffraction structures were obtained for all macrocyclic compounds. DFT calculations and transient absorption spectra were used to study the electronic features of the complexes and the effect of conformational changes. This system shows promise as an accumulated heat sensor.

Original languageEnglish
Pages (from-to)4028-4034
Number of pages7
JournalJournal of the American Chemical Society
Volume140
Issue number11
DOIs
Publication statusPublished - 2018 Mar 21

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Hexadecaphyrin-(1.0.0.0.1.1.0.1.1.0.0.0.1.1.0.1): A Dual Site Ligand That Supports Thermal Conformational Changes'. Together they form a unique fingerprint.

Cite this