TY - JOUR
T1 - Hetero Cu(III)–Pd(II) Complex of a Dibenzo[g,p]chrysene-Fused Bis-dicarbacorrole with Stable Organic Radical Character
AU - Ke, Xian Sheng
AU - Hong, Yongseok
AU - Tu, Peiyu
AU - He, Qing
AU - Lynch, Vincent M.
AU - Kim, Dongho
AU - Sessler, Jonathan L.
PY - 2017/10/25
Y1 - 2017/10/25
N2 - Bis-dicarbacorrole (bis-H3) with two adj-CCNN subunits was synthesized by incorporating a dibenzo[g,p]chrysene moiety into the macrocyclic structure. The two trianionic cores in bis-H3 can stabilize two Cu(III) ions (bis-Cu) or concurrently a Cu(III) cation and a Pd(II) ion in the form of a hetero bis-metal complex (mix-Cu/Pd). As prepared, mix-Cu/Pd displays organic π radical character, as confirmed by various techniques, including electron paramagnetic resonance spectroscopy, cyclic voltammetry, femtosecond transient absorption measurements, and DFT calculations. Radical formation is ascribed to one-electron transfer from the dicarbacorrole backbone to the Pd center allowing the d8 Pd(II) center to be accommodated in a square planner coordination geometry. Nucleus-independent chemical shift and anisotropy of the induced current density calculations provide support for the conclusion that bis-H3 and bis-Cu both display antiaromatic character and contain two formally 16 π-electron dicarbacorrole subunits. On this basis, we suggest that mix-Cu/Pd is best considered as containing a fused 15 π-electron nonaromatic radical subunit and a 16 π-electron antiaromatic subunit. The spectroscopic observations are consistent with these assignments.
AB - Bis-dicarbacorrole (bis-H3) with two adj-CCNN subunits was synthesized by incorporating a dibenzo[g,p]chrysene moiety into the macrocyclic structure. The two trianionic cores in bis-H3 can stabilize two Cu(III) ions (bis-Cu) or concurrently a Cu(III) cation and a Pd(II) ion in the form of a hetero bis-metal complex (mix-Cu/Pd). As prepared, mix-Cu/Pd displays organic π radical character, as confirmed by various techniques, including electron paramagnetic resonance spectroscopy, cyclic voltammetry, femtosecond transient absorption measurements, and DFT calculations. Radical formation is ascribed to one-electron transfer from the dicarbacorrole backbone to the Pd center allowing the d8 Pd(II) center to be accommodated in a square planner coordination geometry. Nucleus-independent chemical shift and anisotropy of the induced current density calculations provide support for the conclusion that bis-H3 and bis-Cu both display antiaromatic character and contain two formally 16 π-electron dicarbacorrole subunits. On this basis, we suggest that mix-Cu/Pd is best considered as containing a fused 15 π-electron nonaromatic radical subunit and a 16 π-electron antiaromatic subunit. The spectroscopic observations are consistent with these assignments.
U2 - 10.1021/jacs.7b09167
DO - 10.1021/jacs.7b09167
M3 - Article
SN - 0002-7863
VL - 139
SP - 15232
EP - 15238
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 42
ER -