Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin

Hanfu Su, Eun Jung Bak, Aeryun Kim, Kavinda Tissera, Jeong Heon Cha, Sungil Jang

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Helicobacter pylori infection causes chronic inflammation in the stomach, which is linked to the development of gastric cancer. The anti-inflammatory and anticancer effects of a glycolysis inhibitor 2-deoxyglucose (2DG) and an antidiabetic medication metformin (Met) have gotten attention. Using a Mongolian gerbil animal model, we investigated H. pylori-mediated gastric pathogenesis and how this pathogenesis is influenced by 2DG and Met. Five-week-old male gerbils were infected with H. pylori strain 7.13. After 2 weeks of infection, gerbils were fed 2DG-containing food (0.03% w/w), Met-containing water (0.5% w/v), or both (Combi) for 2 (short-term) or 10 weeks (long-term). Gastric pathogenesis and host response to H. pylori infection were examined by macroscopic and histopathologic analysis of gerbils’ stomach. As a result, indicators of gastric pathogenesis by H. pylori infection including infiltration of polymorphonuclear neutrophils and lymphocytes, intestinal metaplasia, atrophy, and proliferation of gastric epithelial cells were attenuated by short-term administration of 2DG, Met, or Combi. When the infection was sustained for long-term, gastric pathogenesis in drug-treated gerbils was equivalent to that in untreated gerbils, with the exception that the infiltration of neutrophil was reduced by 2DG. Colonization of H. pylori in stomach was unaffected by both short- and long-term treatments. Our findings demonstrate that the progression of gastric pathogenesis induced by H. pylori infection can be attenuated by the short-term individual or combinational treatment of 2DG and Met, implying that 2DG or Met could be considered as a treatment option for gastric diseases in the early stages of infection.

Original languageEnglish
Pages (from-to)849-858
Number of pages10
JournalJournal of Microbiology
Issue number8
Publication statusPublished - 2022 Aug

Bibliographical note

Publisher Copyright:
© 2022, Author(s).

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin'. Together they form a unique fingerprint.

Cite this