Growth of Si1-xGex(011) on Si(011)16×2 by gas-source molecular beam epitaxy: Growth kinetics, Ge incorporation, and surface phase transitions

N. Taylor, H. Kim, T. Spila, J. A. Eades, G. Glass, P. Desjardins, J. E. Greene

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Single crystal Si1-xGex(011) layers with x≤0.35 have been grown on double-domain Si(011)"16×2" surfaces from Si2H6/Ge2H6 mixtures at temperatures Ts=400-950°C. D2 temperature programmed desorption was used to show that the structure of the Si(011)"16×2" surface unit cell, more correctly written as [21721] since the unit cell vectors are nonorthogonal, is composed of 16 adatoms and eight π-bonded dimers with a dangling bond density half that of the 1×1 surface. Si1-xGex(011) overlayers are "16×2" when x<xc(Ts) and "2×8" with x>xc(Ts). The value of xc decreases from ≃ 0.10 at Ts=475°C to 0.08 at 550°C to 0.06 at 650°C. Both the "2×8" and "16×2" Si1-xGex(011) surface reconstructions gradually and reversibly transform to 1×1 at Ts between 650 and 725°C. Film growth kinetics exhibit three distinct regimes. At low temperatures (Ts≲500°C), the film deposition rate RSiGe decreases exponentially with 1/Ts in a surface-reaction-limited growth mode for which the rate-limiting step is hydrogen desorption from Si and Ge monohydride phases. RSiGe becomes essentially constant with Ts in the intermediate impingement-flux-limited range, Ts=500-650°C. At Ts>650°C, RSiGe increases again with Ts due initially (Ts≃650-725°C) to an increase in the steady-state dangling bond coverage as the surface reconstruction gradually transforms to 1×1. The continued increase in RSiGe at even higher Ts is associated with strain-induced roughening. Ge/Si ratios in as-deposited films are linearly proportional to the incident Ge2H6/Si2H6 flux ratio JGe2H6/JSi2H6 and nearly independent of Ts indicating that the reactive sticking probabilities of Si2H6 and Ge2H6 have very similar temperature dependencies. RSiGe(JGe2H6/JSi2H6,Ts) in both the surface-reaction-limited and flux-limited regimes is well described by a simple kinetic model incorporating second-order dissociative chemisorption and second-order hydrogen desorption as rate-limiting steps.

Original languageEnglish
Pages (from-to)501-511
Number of pages11
JournalJournal of Applied Physics
Issue number1
Publication statusPublished - 1999

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)


Dive into the research topics of 'Growth of Si1-xGex(011) on Si(011)16×2 by gas-source molecular beam epitaxy: Growth kinetics, Ge incorporation, and surface phase transitions'. Together they form a unique fingerprint.

Cite this