Graphene modelocked VECSELs

C. A. Zaugg, V. J. Wittwer, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


In the past decade, passively modelocked optically pumped vertical external cavity surface emitting lasers (OPVECSELs), sometimes referred to as semiconductor disk lasers (OP-SDLs), impressively demonstrated the potential for generating femtosecond pulses at multi-Watt average output powers with gigahertz repetition rates. Passive modelocking with a semiconductor saturable absorber mirror (SESAM) is well established and offers many advantages such as a flexible design of the parameters and low non-saturable losses. Recently, graphene has emerged as an attractive wavelength-independent alternative saturable absorber for passive modelocking in various lasers such as fiber or solid-state bulk lasers because of its unique optical properties. Here, we present and discuss the modelocked VECSELs using graphene saturable absorbers. The broadband absorption due to the linear dispersion of the Dirac electrons in graphene makes this absorber interesting for wavelength tunable ultrafast VECSELs. Such widely tunable modelocked sources are in particularly interesting for bio-medical imaging applications. We present a straightforward approach to design the optical properties of single layer graphene saturable absorber mirrors (GSAMs) suitable for passive modelocking of VECSELs. We demonstrate sub-500 fs pulses from a GSAM modelocked VECSEL. The potential for broadband wavelength tuning is confirmed by covering 46 nm in modelocked operation using three different VECSEL chips and up to 21 nm tuning in pulsed operation is achieved with one single gain chip. A linear and nonlinear optical characterization of different GSAMs with different absorption properties is discussed and can be compared to SESAMs.

Original languageEnglish
Title of host publicationVertical External Cavity Surface Emitting Lasers (VECSELs) IV
ISBN (Print)9780819498793
Publication statusPublished - 2014
EventVertical External Cavity Surface Emitting Lasers (VECSELs) IV - San Francisco, CA, United States
Duration: 2014 Feb 22014 Feb 4

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherVertical External Cavity Surface Emitting Lasers (VECSELs) IV
Country/TerritoryUnited States
CitySan Francisco, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Graphene modelocked VECSELs'. Together they form a unique fingerprint.

Cite this