Abstract
We report on the improvement of the infrared optical trapping efficiency of dielectric microspheres by the controlled adhesion of gold nanorods to their surface. When trapping wavelength was equal to the surface plasmon resonance wavelength of the gold nanorods (808 nm), a 7 times improvement in the optical force acting on the microspheres was obtained. Such a gold nanorod assisted enhancement of the optical trapping efficiency enabled the intracellular manipulation of the decorated dielectric microsphere by using a low power (22 mW) infrared optical trap.
Original language | English |
---|---|
Pages (from-to) | 19735-19747 |
Number of pages | 13 |
Journal | Optics Express |
Volume | 22 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2014 Aug 11 |
Bibliographical note
Funding Information:This work was supported by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161 and MAT2013-47395-C4-1-R). P.H.G. thanks the Spanish Ministerio de Economia y competitividad (MINECO) for Juan de la Cierva program. E.M. Rodriguez thanks ERC for Marie Curie fellowship (PIOF-GA-2010-274404 - LUNAMED). KD thanks the UK Engineering and Physical Sciences Research Council for support. J.A.C. is a Concordia University Research Chair in Nanoscience and is grateful to Concordia University for Financial support. J.A.C. is grateful for the support from (NSERC) Canada.
Funding Information:
This work was supported by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161 and MAT2013-47395-C4-1-R). P.H.G. thanks the Spanish Ministerio de Economia y competitividad (MINECO) for Juan de la Cierva program. E.M. Rodriguez thanks ERC for Marie Curie fellowship (PIOF-GA-2010-274404 – LUNAMED). KD thanks the UK Engineering and Physical Sciences Research Council for support. J.A.C. is a Concordia University Research Chair in Nanoscience and is grateful to Concordia University for Financial support. J.A.C. is grateful for the support from (NSERC) Canada.
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics