Abstract
Enzymatically modified isoquercitrin (EMIQ), oligoglucosyl naringenin-7-(glucose [G]), and oligoglucosyl hesperetin (H)-7-G were produced via oligoglucosylation of quercetin-3-glucose, naringenin-7-G (prunin), and H-7-G, respectively, by cyclodextrin glucosyltransferase from Bacillus macerans. The aim was to explore the oligoglucosylation and the resulting changes in physicochemical properties. Water solubility of EMIQ, oligoglucosyl prunin, and oligoglucosyl H-7-G enormously increased in comparison with that of their aglycones. Glycosylation of an aglycone generally enhances its solubility. Resistance of the aglycones to oxidative degradation by the Cu2+ ion was strongly increased by the oligoglucosylation. This is probably because oligoglucosylation may protect sensitive parts of an aglycones molecule from the Cu2+ oxidation. Only EMIQ maintained its structure during thermal treatment much longer than quercetin did. Degradation of flavonoid aglycones by ultraviolet light C irradiation at 254 nm was not affected, and their antioxidant activities gradually decreased with the greater extent of oligoglucosylation.
Original language | English |
---|---|
Pages (from-to) | 75-83 |
Number of pages | 9 |
Journal | Food Chemistry |
Volume | 229 |
DOIs | |
Publication status | Published - 2017 Aug 15 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Food Science