Global type area charnockites in southern India revisited: Implications for Earth's oldest supercontinent

Cheng Xue Yang, M. Santosh, T. Tsunogae, E. Shaji, Pin Gao, Sanghoon Kwon

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


The global ‘type area’ charnockites and those in the surrounding localities within Madras block of the Southern Granulite Terrane in India dominantly comprise felsic to intermediate, coarse to medium grained, orthopyroxene-bearing anhydrous granulite facies rocks with sporadic garnet. In several localities, the charnockitic suite contains mafic magmatic enclaves of gabbroic to dioritic composition showing calcic and peraluminous composition. The charnockite suite shows compositional range from monzonite through granodiorite to granite, and are calcic and calc-alkalic, peraluminous, including both magnesian and ferroan types. Their major and trace element variations are consistent with progressive magmatic differentiation. The charnockites show high Ba-Sr content with a trend from normal arc-related rocks to adakites. The geochemical features of the charnockites and mafic enclaves are consistent with subduction-related arc setting, and slab-derived magmas interacting with mantle wedge peridotite. The P-T conditions as estimated through mineral phase equilibria modelling and pseudosection computations of representative charnockite and mafic enclave samples show a range of ca. 7 to 9 kbar and 870 to 960 °C, suggesting high- to ultra-high temperature granulite facies conditions during the peak metamorphism. The zircon grains from the charnockites show magmatic features with oscillatory or banded zoning, and in many cases display core-rim structure indicating dissolution and metamorphic overgrowth. The magmatic grains/domains show typical steep LREE to HREE pattern, whereas the metamorphic domains show relatively flat HREE. Magmatic zircon U-Pb data indicate crystallization ages of ca. 2.53 Ga to 2.57 Ga. The identical age from magmatic zircon grains in the mafic enclaves suggests bimodal magmatism with underplated mafic magmas intruding into the felsic magma chamber. The U-Pb data from metamorphic zircon and monazite indicate that all the rocks were metamorphosed coevally at ca. 2.47 Ga to 2.49 Ga, soon after their emplacement. The close timing between magmatism and metamorphism of ca. 40 Myr also suggests the formation of the magmatic suite along an active convergent margin, followed by collisional metamorphism during the termination of subduction and ocean closure. The Lu-Hf analyses of magmatic domains in zircon show mostly positive ɛHf(t) values up to +8.7, with only a few spots showing slightly negative values up to −0.8. Zircon grains in the mafic enclaves also show mostly positive ɛHf(t) values up to +4.3. The U-Pb-Hf data are consistent with juvenile arc building during late Neoarchean, with no significant older components. Together with the Hf model ages, the data indicate that the magmas were derived from depleted mantle components of Meso- to Neoarchean age, which would suggest an active subduction regime that continued until the ocean closure during end Neoarchean-earliest Paleoproterozoic. The granulite blocks surrounding the southern margin of the Dharwar craton including the Madras block are interpreted as multiple arcs that coalesced and accreted onto the craton during the Neoarchean-Paleoproterozoic transition. These blocks, which are dominated by charnockites and ranging in age from Mesoarchean to late Neoarchean, and their equivalents in other cratonic fragments over the globe, can be correlated to the ‘expanded Ur’, in building the oldest supercontinent on Earth.

Original languageEnglish
Pages (from-to)106-132
Number of pages27
JournalGondwana Research
Publication statusPublished - 2021 Jun

Bibliographical note

Funding Information:
We thank GR Associate Editor Dr. Li Tang for handling our submission. and Dr.M.L. Dora and another two anonymous referees for their comments which helped in improving this paper. C.X. Yang thanks Bing Yu for guidance with mineral phase equilibria computations. This study was supported by Foreign Expert grant to M. Santosh and Fundamental Research Fund of Central Universities to Cheng-Xue Yang from China University of Geosciences Beijing (China). T. Tsunogae acknowledges support from Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS) (No. 18H01300 and 19F19020 ). This research was partially supported by NRF 2017R1A6A1A07015374 , 2019R1A2C1002211 supervised by the Ministry of Science and ICT, Korea to Sanghoon Kwon.

Publisher Copyright:
© 2021 International Association for Gondwana Research

All Science Journal Classification (ASJC) codes

  • Geology


Dive into the research topics of 'Global type area charnockites in southern India revisited: Implications for Earth's oldest supercontinent'. Together they form a unique fingerprint.

Cite this