Abstract
Salivary dysfunction commonly occurs in many older adults and is considered a physiological phenomenon. However, the genetic changes in salivary glands during aging have not been characterized. The present study analyzed the gene expression profile in salivary glands from accelerated aging klotho deficient mice (klotho−/−, 4 weeks old). Microarray analysis showed that 195 genes were differentially expressed (z-score > 2 in two independent arrays) in klotho null mice compared to wild-type mice. Importantly, alpha2-Na+/K+-ATPase (Atp1a2), Ca2+-ATPase (Atp2a1), epidermal growth factor (EGF), and nerve growth factor (NGF), which have been suggested to be regulators of submandibular salivary gland function, were significantly decreased. When a network was constructed from the differentially expressed genes, proliferator-activated receptor-γ (PPAR γ), which regulates energy homeostasis and insulin sensitivity, was located at the core of the network. In addition, the expression of genes proposed to regulate various PPAR γ-related cellular pathways, such as Klk1b26, Egfbp2, Cox8b, Gpx3, Fabp3, EGF, and NGFβ, was altered in the submandibular salivary glands of klotho−/− mice. Our results may provide clues for the identification of novel genes involved in salivary gland dysfunction. Further characterization of these differentially expressed genes will be useful in elucidating the genetic basis of aging-related changes in the submandibular salivary gland.
Original language | English |
---|---|
Pages (from-to) | 3282-3294 |
Number of pages | 13 |
Journal | Journal of Cellular Physiology |
Volume | 233 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2018 Apr |
Bibliographical note
Funding Information:This work was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2015005588) and by the Korean government MSIP (No. 2008–0062283).
Publisher Copyright:
© 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
All Science Journal Classification (ASJC) codes
- Physiology
- Clinical Biochemistry
- Cell Biology