Gd3+ tethered gold nanorods for combined magnetic resonance imaging and photo-thermal therapy

Arunkumar Pitchaimani, Tuyen Duong Thanh Nguyen, Leila Maurmann, Jaehong Key, Stefan H. Bossmann, Santosh Aryal

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Near infrared (NIR) mediated photothermal therapy and magnetic resonance imaging (MRI) are promising treatment and imaging modalities in the field of cancer theranostics. Gold nanorods are the first choice of materials for NIR-mediated photothermal therapy due to their strong localized surface plasmon resonance (LSPR) at NIR region. Similarly, gadolinium based MRI contrast agents have an ability to increase the ionic and molecular relaxivity, thereby enhancing the solvent proton relaxation rate resulting in contrast enhancement. Herein, the effort has been made to engineer a dual front theranostic agent with combined photothermal and magnetic resonance imaging capacity using gadolinium tethered gold nanorods (Gd3+-AuNR). NIR-responsive gold nanorods were surface fabricated by means of Au-thiol interaction using a thiolated macrocyclic chelator that chelates Gd3+ ions, and further stabilized by thiolated polyethylene glycol (PEG-SH). The magnetic properties of the Gd3+-AuNR displayed an enhanced r1 relaxivity of 12.1 mM-1s-1, with higher biological stability, and contrast enhancement in both solution state and in cell pellets. In-vitro (cell-free) and ex-vivo (on pig skin) analysis of the Gd3+-AuNR shows enhanced photothermal properties as equivalent to that of the raw AuNR. Furthermore, Gd3+-AuNR showed competent cellular entry and intracellular distribution as revealed by hyperspectral microscopy. In addition, Gd3+-AuNR also exhibits significant thermal ablation of B16-F10 cells in the presence of NIR. Thus, Gd3+-AuNR features a significant theranostic potential with combined photothermal and imaging modality, suggesting a great potential in anticancer therapy.

Original languageEnglish
Pages (from-to)417-426
Number of pages10
JournalJournal of Biomedical Nanotechnology
Issue number4
Publication statusPublished - 2017 Apr

Bibliographical note

Funding Information:
The authors acknowledge the support from Nanotechnology Innovation Center of Kansas State (NICKS) and the innovative research award program of Johnson Cancer Research Center (JCRC), Kansas State University, Manhattan, Kansas.

Publisher Copyright:
Copyright © 2017 American Scientific Publishers.

All Science Journal Classification (ASJC) codes

  • Medicine(all)


Dive into the research topics of 'Gd3+ tethered gold nanorods for combined magnetic resonance imaging and photo-thermal therapy'. Together they form a unique fingerprint.

Cite this