Abstract
In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original hazy image by applying White Balance (WB), Contrast Enhancing (CE), and Gamma Correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final dehazed image is yielded by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach such that the halo artifacts can be avoided. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 3253-3261 |
Number of pages | 9 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - 2018 Dec 14 |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: 2018 Jun 18 → 2018 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 18/6/18 → 18/6/22 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition