Abstract
Single-image super-resolution is a fundamental task for vision applications to enhance the image quality with respect to spatial resolution. If the input image contains degraded pixels, the artifacts caused by the degradation could be amplified by super-resolution methods. Image blur is a common degradation source. Images captured by moving or still cameras are inevitably affected by motion blur due to relative movements between sensors and objects. In this work, we focus on the super-resolution task with the presence of motion blur. We propose a deep gated fusion convolution neural network to generate a clear high-resolution frame from a single natural image with severe blur. By decomposing the feature extraction step into two task-independent streams, the dual-branch design can facilitate the training process by avoiding learning the mixed degradation all-in-one and thus enhance the final high-resolution prediction results. Extensive experiments demonstrate that our method generates sharper super-resolved images from low-resolution inputs with high computational efficiency.
Original language | English |
---|---|
Publication status | Published - 2019 |
Event | 29th British Machine Vision Conference, BMVC 2018 - Newcastle, United Kingdom Duration: 2018 Sept 3 → 2018 Sept 6 |
Conference
Conference | 29th British Machine Vision Conference, BMVC 2018 |
---|---|
Country/Territory | United Kingdom |
City | Newcastle |
Period | 18/9/3 → 18/9/6 |
Bibliographical note
Funding Information:This work is partially supported by National Science and Technology Major Project (No. 2018ZX01008103), NSF CARRER (No.1149783), and gifts from Adobe and Nvidia.
Funding Information:
This work is partially supported by National Science and T echnology Major Project (No. 2018ZX01008103),NSFCARRER(No.1149783),andgiftsfromAdobeandNvidia.
Publisher Copyright:
© 2018. The copyright of this document resides with its authors.
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition