Fragment-based drug nanoaggregation reveals drivers of self-assembly

Chen Chen, You Wu, Shih Ting Wang, Naxhije Berisha, Mandana T. Manzari, Kristen Vogt, Oleg Gang, Daniel A. Heller

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.

Original languageEnglish
Article number8340
JournalNature communications
Volume14
Issue number1
DOIs
Publication statusPublished - 2023 Dec

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Fragment-based drug nanoaggregation reveals drivers of self-assembly'. Together they form a unique fingerprint.

Cite this