Abstract
Background: Atopic dermatitis (AD) is a complex condition characterized by impaired epithelial barriers and dysregulated immune cells. In this study, we demonstrated Forsythia velutina Nakai extract (FVE) simultaneously inhibits basophils, macrophages, keratinocytes, and T cells that are closely interrelated in AD development. Methods: We analyzed the effect of FVE on nitric oxide and reactive oxygen species (ROS) production in macrophages, basophil degranulation, T cell activation, and tight junctions in damaged keratinocytes. Expression of cell-type-specific inflammatory mediators was analyzed, and the underlying signaling pathways for anti-inflammatory effects of FVE were investigated. The anti-inflammatory effects of FVE were validated using a DNCB-induced mouse model of AD. Anti-inflammatory activity of compounds isolated from FVE was validated in each immune cell type. Results: FVE downregulated the expression of inflammatory mediators and ROS production in macrophages through TLR4 and NRF2 pathways modulation. It significantly reduced basophil degranulation and expression of type 2 (T2) and pro-inflammatory cytokines by perturbing FcεRI signaling. Forsythia velutina Nakai extract also robustly inhibited the expression of T2 cytokines in activated T cells. Furthermore, FVE upregulated the expression of tight junction molecules in damaged keratinocytes and downregulated leukocyte attractants, as well as IL-33, an inducer of T2 inflammation. In the AD mouse model, FVE showed superior improvement in inflammatory cell infiltration and skin structure integrity compared to dexamethasone. Dimatairesinol, a lignan dimer, was identified as the most potent anti-inflammatory FVE compound. Conclusion: Forsythia velutina Nakai extract and its constituent compounds demonstrate promising efficacy as a therapeutic option for prolonged AD treatment by independently inhibiting various cell types associated with AD and disrupting the deleterious link between them.
Original language | English |
---|---|
Pages (from-to) | 1242-1257 |
Number of pages | 16 |
Journal | Allergy: European Journal of Allergy and Clinical Immunology |
Volume | 79 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2024 May |
Bibliographical note
Publisher Copyright:© 2023 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
All Science Journal Classification (ASJC) codes
- Immunology and Allergy
- Immunology