Fluorine-Decorated Graphene Nanoribbons for an Anticorrosive Polymer Electrolyte Membrane Fuel Cell

Song Jin, Seung Yong Yang, Jong Min Lee, Mun Seon Kang, Sung Mook Choi, Wook Ahn, Xolile Fuku, Remegia Mmalewane Modibedi, Byungchan Han, Min Ho Seo

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Pt-supported carbon material-based electrocatalysts are formidably suffering from carbon corrosion when H2O and O2 molecules are present at high voltages in polymer electrolyte membrane fuel cells (PEMFCs). In this study, we discovered that the edge site of a fluorine-doped graphene nanoribbon (F-GNR) was slightly adsorbed with H2O and was thermodynamically unfavorable with O atoms after defining the thermodynamically stable structure of the F-GNR from DFT calculations. Based on computational predictions, the physicochemical and electrochemical properties of F-GNRs with/without Pt nanoparticles derived from a modified Hummer's method and the polyol process were investigated as support materials for electrocatalysts and additives in the cathode of a PEMFC, respectively. The Pt/F-GNR showed the lowest degradation rate in carbon corrosion and was effective in the cathode as additives, resulting from the enhanced carbon corrosion durability owing to the improved structural stability and water management. Notably, the F-GNR with highly stable carbon corrosion contributed to achieving a more durable PEMFC for long-term operation.

Original languageEnglish
Pages (from-to)26936-26947
Number of pages12
JournalACS Applied Materials and Interfaces
Issue number23
Publication statusPublished - 2021 Jun 16

Bibliographical note

Funding Information:
This manuscript was written through contributions from all authors. S.J., S.Y.Y., B.C.H., and M.H.S. conceived the idea with equal contributions. S.J. carried out the synthetic experiments and analyzed the overall data. S.Y.Y. supported the synthetic experiments and analysis for MEA. Experimental analysis was supported by M.S.K., S.M.C., A.W., X.F., and R.M.M. with discussion. DFT calculations were performed by J.M.L. and M.H.S.

Publisher Copyright:
© 2021 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)


Dive into the research topics of 'Fluorine-Decorated Graphene Nanoribbons for an Anticorrosive Polymer Electrolyte Membrane Fuel Cell'. Together they form a unique fingerprint.

Cite this