FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS

Changhwan Kim, Se Yun Um, Hyungchan Yoon, Hong Goo Kang

Research output: Contribution to journalConference articlepeer-review

Abstract

In this paper, we propose a method to flexibly control the local prosodic variation of a neural text-to-speech (TTS) model. To provide expressiveness for synthesized speech, conventional TTS models utilize utterance-wise global style embeddings that are obtained by compressing frame-level embeddings along the time axis. However, since utterance-wise global features do not contain sufficient information to represent the characteristics of word-level local features, they are not appropriate for direct use on controlling prosody at a fine scale. In multi-style TTS models, it is very important to have the capability to control local prosody because it plays a key role in finding the most appropriate text-to-speech pair among many one-to-many mapping candidates. To explicitly present local prosodic characteristics to the contextual information of the corresponding input text, we propose a module to predict the fundamental frequency (F0) of each text by conditioning on the utterance-wise global style embedding. We also estimate multi-style embeddings using a multi-style encoder, which takes as inputs both a global utterance-wise embedding and a local F0 embedding. Our multi-style embedding enhances the naturalness and expressiveness of synthesized speech and is able to control prosody styles at the word-level or phoneme-level.

Original languageEnglish
Pages (from-to)4561-4565
Number of pages5
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Volume2022-September
DOIs
Publication statusPublished - 2022
Event23rd Annual Conference of the International Speech Communication Association, INTERSPEECH 2022 - Incheon, Korea, Republic of
Duration: 2022 Sept 182022 Sept 22

Bibliographical note

Publisher Copyright:
Copyright © 2022 ISCA.

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS'. Together they form a unique fingerprint.

Cite this