TY - JOUR
T1 - Fitting the fractional polynomial model to non-gaussian longitudinal data
AU - Ryoo, Ji Hoon
AU - Long, Jeffrey D.
AU - Welch, Greg W.
AU - Reynolds, Arthur
AU - Swearer, Susan M.
N1 - Publisher Copyright:
© 2017 Ryoo, Long, Welch, Reynolds and Swearer.
PY - 2017/8/22
Y1 - 2017/8/22
N2 - As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM) that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.
AB - As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM) that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.
UR - http://www.scopus.com/inward/record.url?scp=85028070474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028070474&partnerID=8YFLogxK
U2 - 10.3389/fpsyg.2017.01431
DO - 10.3389/fpsyg.2017.01431
M3 - Article
AN - SCOPUS:85028070474
SN - 1664-1078
VL - 8
JO - Frontiers in Psychology
JF - Frontiers in Psychology
IS - AUG
M1 - 1431
ER -