First-Principles Design of Graphene-Based Active Catalysts for Oxygen Reduction and Evolution Reactions in the Aprotic Li-O2 Battery

Joonhee Kang, Jong Sung Yu, Byungchan Han

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Using first-principles density functional theory (DFT) calculations, we demonstrate that catalytic activities toward oxygen reduction and evolution reactions (ORR and OER) in a Li-O2 battery can be substantially improved with graphene-based materials. We accomplish the goal by calculating free energy diagrams for the redox reactions of oxygen to identify a rate-determining step controlling the overpotentials. We unveil that the catalytic performance is well described by the adsorption energies of the intermediates LiO2 and Li2O2 and propose that graphene-based materials can be substantially optimized through either by N doping or encapsulating Cu(111) single crystals. Furthermore, our systematic approach with DFT calculations applied to design of optimum catalysts enables screening of promising candidates for the oxygen electrochemistry leading to considerable improvement of efficiency of a range of renewable energy devices.

Original languageEnglish
Pages (from-to)2803-2808
Number of pages6
JournalJournal of Physical Chemistry Letters
Volume7
Issue number14
DOIs
Publication statusPublished - 2016 Jul 21

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'First-Principles Design of Graphene-Based Active Catalysts for Oxygen Reduction and Evolution Reactions in the Aprotic Li-O2 Battery'. Together they form a unique fingerprint.

Cite this