TY - JOUR
T1 - First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
AU - Cho, Yeseul
AU - Kim, Jhoon
AU - Go, Sujung
AU - Kim, Mijin
AU - Lee, Seoyoung
AU - Kim, Minseok
AU - Chong, Heesung
AU - Lee, Won Jin
AU - Lee, Dong Won
AU - Torres, Omar
AU - Park, Sang Seo
N1 - Publisher Copyright:
© 2024 Yeseul Cho et al.
PY - 2024/7/23
Y1 - 2024/7/23
N2 - Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world's first geostationary-Earth-orbit (GEO) satellite instrument designed for air quality monitoring. This study describes improvements made to the GEMS aerosol retrieval (AERAOD) algorithm, including spectral binning, surface reflectance estimation, cloud masking, and post-processing, along with validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia. The adoption of spectral binning in the lookup table (LUT) approach reduces random errors and enhances the stability of satellite measurements. In addition, we introduced a new high-resolution database for surface reflectance estimation based on the minimum-reflectance method, which was adapted to the GEMS pixel resolution. Monthly background aerosol optical depth (BAOD) values were used to estimate hourly GEMS surface reflectance consistently. Advanced cloud-removal techniques have been implemented to significantly improve the effectiveness of cloud detection and enhance aerosol retrieval quality. An innovative post-processing correction method based on machine learning has been introduced to address artificial diurnal biases in aerosol optical depth (AOD) observations. In this study, we investigated selected aerosol events, highlighting the capability of GEMS in monitoring and providing insights into hourly aerosol optical properties during various atmospheric events. The performance of the GEMS AERAOD products was validated against the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data for the period from November 2021 to October 2022. GEMS AOD at 443 nm demonstrated a strong correlation with AERONET AOD at 443 nm (R Combining double low line 0.792). However, it exhibited biased patterns, including the underestimation of high AOD values and overestimation of low-AOD conditions. Different aerosol types (highly absorbing fine aerosols, dust aerosols, and non-absorbing aerosols) exhibited distinct validation results. The retrievals of GEMS single-scattering albedo (SSA) at 443 nm agreed well with the AERONET SSA at 440 nm within reasonable error ranges, with variations observed among aerosol types. For GEMS AOD at 443 nm exceeding 0.4 (1.0), 42.76 % (56.61 %) and 67.25 % (85.70 %) of GEMS SSA data points fell within the ±0.03 and ±0.05 error bounds, respectively. Model-enforced post-processing correction improved GEMS AOD and SSA performance, thereby reducing the diurnal variation in the biases. The validation of the retrievals of GEMS aerosol layer height (ALH) against the CALIOP data demonstrates good agreement, with a mean bias of -0.225 km and 55.29 % (71.70 %) of data points falling within ±1 km (1.5 km).
AB - Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world's first geostationary-Earth-orbit (GEO) satellite instrument designed for air quality monitoring. This study describes improvements made to the GEMS aerosol retrieval (AERAOD) algorithm, including spectral binning, surface reflectance estimation, cloud masking, and post-processing, along with validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia. The adoption of spectral binning in the lookup table (LUT) approach reduces random errors and enhances the stability of satellite measurements. In addition, we introduced a new high-resolution database for surface reflectance estimation based on the minimum-reflectance method, which was adapted to the GEMS pixel resolution. Monthly background aerosol optical depth (BAOD) values were used to estimate hourly GEMS surface reflectance consistently. Advanced cloud-removal techniques have been implemented to significantly improve the effectiveness of cloud detection and enhance aerosol retrieval quality. An innovative post-processing correction method based on machine learning has been introduced to address artificial diurnal biases in aerosol optical depth (AOD) observations. In this study, we investigated selected aerosol events, highlighting the capability of GEMS in monitoring and providing insights into hourly aerosol optical properties during various atmospheric events. The performance of the GEMS AERAOD products was validated against the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data for the period from November 2021 to October 2022. GEMS AOD at 443 nm demonstrated a strong correlation with AERONET AOD at 443 nm (R Combining double low line 0.792). However, it exhibited biased patterns, including the underestimation of high AOD values and overestimation of low-AOD conditions. Different aerosol types (highly absorbing fine aerosols, dust aerosols, and non-absorbing aerosols) exhibited distinct validation results. The retrievals of GEMS single-scattering albedo (SSA) at 443 nm agreed well with the AERONET SSA at 440 nm within reasonable error ranges, with variations observed among aerosol types. For GEMS AOD at 443 nm exceeding 0.4 (1.0), 42.76 % (56.61 %) and 67.25 % (85.70 %) of GEMS SSA data points fell within the ±0.03 and ±0.05 error bounds, respectively. Model-enforced post-processing correction improved GEMS AOD and SSA performance, thereby reducing the diurnal variation in the biases. The validation of the retrievals of GEMS aerosol layer height (ALH) against the CALIOP data demonstrates good agreement, with a mean bias of -0.225 km and 55.29 % (71.70 %) of data points falling within ±1 km (1.5 km).
UR - http://www.scopus.com/inward/record.url?scp=85199680656&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199680656&partnerID=8YFLogxK
U2 - 10.5194/amt-17-4369-2024
DO - 10.5194/amt-17-4369-2024
M3 - Article
AN - SCOPUS:85199680656
SN - 1867-1381
VL - 17
SP - 4369
EP - 4390
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 14
ER -