Abstract
Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/ BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/ Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity.
Original language | English |
---|---|
Pages (from-to) | 22348-22354 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 7 |
Issue number | 40 |
DOIs | |
Publication status | Published - 2015 Oct 14 |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)