TY - GEN
T1 - Face recognition using kernel methods
AU - Yang, Ming Hsuan
PY - 2002
Y1 - 2002
N2 - Principal Component Analysis and Fisher Linear Discriminant methods have demonstrated their success in face detection, recognition, and tracking. The representation in these subspace methods is based on second order statistics of the image set, and does not address higher order statistical dependencies such as the relationships among three or more pixels. Recently Higher Order Statistics and Independent Component Analysis (ICA) have been used as informative low dimensional representations for visual recognition. In this paper, we investigate the use of Kernel Principal Component Analysis and Kernel Fisher Linear Discriminant for learning low dimensional representations for face recognition, which we call Kernel Eigenface and Kernel Fisherface methods. While Eigenface and Fisherface methods aim to find projection directions based on the second order correlation of samples, Kernel Eigenface and Kernel Fisherface methods provide generalizations which take higher order correlations into account. We compare the performance of kernel methods with Eigenface, Fisherface and ICA-based methods for face recognition with variation in pose, scale, lighting and expression. Experimental results show that kernel methods provide better representations and achieve lower error rates for face recognition.
AB - Principal Component Analysis and Fisher Linear Discriminant methods have demonstrated their success in face detection, recognition, and tracking. The representation in these subspace methods is based on second order statistics of the image set, and does not address higher order statistical dependencies such as the relationships among three or more pixels. Recently Higher Order Statistics and Independent Component Analysis (ICA) have been used as informative low dimensional representations for visual recognition. In this paper, we investigate the use of Kernel Principal Component Analysis and Kernel Fisher Linear Discriminant for learning low dimensional representations for face recognition, which we call Kernel Eigenface and Kernel Fisherface methods. While Eigenface and Fisherface methods aim to find projection directions based on the second order correlation of samples, Kernel Eigenface and Kernel Fisherface methods provide generalizations which take higher order correlations into account. We compare the performance of kernel methods with Eigenface, Fisherface and ICA-based methods for face recognition with variation in pose, scale, lighting and expression. Experimental results show that kernel methods provide better representations and achieve lower error rates for face recognition.
UR - http://www.scopus.com/inward/record.url?scp=84898999900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898999900&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84898999900
SN - 0262042088
SN - 9780262042086
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 14 - Proceedings of the 2001 Conference, NIPS 2001
PB - Neural information processing systems foundation
T2 - 15th Annual Neural Information Processing Systems Conference, NIPS 2001
Y2 - 3 December 2001 through 8 December 2001
ER -