TY - JOUR
T1 - Face recognition based on nonlinear feature approach
AU - Abusham, Eimad Eldin Abdu
AU - Jin, Andrew T.B.
AU - Kiong, Wong E.
AU - Debashis, G.
PY - 2008
Y1 - 2008
N2 - Feature extraction techniques are widely used to reduce the complexity high dimensional data. Nonlinear feature extraction via Locally Linear Embedding (LLE) has attracted much attention due to their high performance. In this paper, we proposed a novel approach for face recognition to address the challenging task of recognition using integration of nonlinear dimensional reduction Locally Linear Embedding integrated with Local Fisher Discriminant Analysis (LFDA) to improve the discriminating power of the extracted features by maximize between-class while within-class local structure is preserved. Extensive experimentation performed on the CMU-PIE database indicates that the proposed methodology outperforms Benchmark methods such as Principal Component Analysis (PCA), Fisher Discrimination Analysis (FDA). The results showed that 95% of recognition rate could be obtained using our proposed method.
AB - Feature extraction techniques are widely used to reduce the complexity high dimensional data. Nonlinear feature extraction via Locally Linear Embedding (LLE) has attracted much attention due to their high performance. In this paper, we proposed a novel approach for face recognition to address the challenging task of recognition using integration of nonlinear dimensional reduction Locally Linear Embedding integrated with Local Fisher Discriminant Analysis (LFDA) to improve the discriminating power of the extracted features by maximize between-class while within-class local structure is preserved. Extensive experimentation performed on the CMU-PIE database indicates that the proposed methodology outperforms Benchmark methods such as Principal Component Analysis (PCA), Fisher Discrimination Analysis (FDA). The results showed that 95% of recognition rate could be obtained using our proposed method.
UR - http://www.scopus.com/inward/record.url?scp=37349081296&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37349081296&partnerID=8YFLogxK
U2 - 10.3844/ajassp.2008.574.580
DO - 10.3844/ajassp.2008.574.580
M3 - Article
AN - SCOPUS:37349081296
SN - 1546-9239
VL - 5
SP - 574
EP - 580
JO - American Journal of Applied Sciences
JF - American Journal of Applied Sciences
IS - 5
ER -