Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure

Jun Young Lim, Namhyun Kim, Jong Chul Park, Sun K. Yoo, Dong Ah Shin, Kyu Won Shim

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Purpose: Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects. Material and methods: This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test. Results and Conclusion: We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.

Original languageEnglish
Pages (from-to)1553-1562
Number of pages10
JournalChild's Nervous System
Volume33
Issue number9
DOIs
Publication statusPublished - 2017 Sept 1

Bibliographical note

Funding Information:
This study was supported by a faculty research grant of Yonsei University College of Medicine for 2016 (6-2016-0075). Special thanks to Su-Heon Woo (School of Biomechanical Engineering, Inje University, Gimhae, Korea; Medyssey Co, Ltd. Jecheon, Korea) for his contribution.

Funding Information:
Acknowledgements This study was supported by a faculty research grant of Yonsei University College of Medicine for 2016 (6-2016-0075). Special thanks to Su-Heon Woo (School of Biomechanical Engineering, Inje University, Gimhae, Korea; Medyssey Co, Ltd. Jecheon, Korea) for his contribution.

Publisher Copyright:
© 2017, Springer-Verlag GmbH Germany.

All Science Journal Classification (ASJC) codes

  • Pediatrics, Perinatology, and Child Health
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure'. Together they form a unique fingerprint.

Cite this