TY - JOUR
T1 - Exploratory synthetic studies of the α-methoxylation of amides via cuprous ion-promoted decomposition of o-diazobenzamides
AU - Han, Gyoonhee
AU - LaPorte, Matthew G.
AU - McIntosh, Mathias C.
AU - Weinreb, Steven M.
AU - Parvez, Masood
PY - 1996/12/27
Y1 - 1996/12/27
N2 - A convenient nonelectrochemical amide oxidation method has been developed. The process involves a cuprous ion-promoted decomposition of o-diazobenzamides like 4, generated in situ from the corresponding o-aminobenzamides, to give N-acyliminium ion intermediate 9 via a 1,5-H-atom transfer, followed by metal-catalyzed oxidation of the resulting α-amidyl radical. The transformation produces α-methoxybenzamides 15 in good yields. An attempt was made to apply this oxidation method to a total synthesis of the alkaloid (-)-anisomycin (16). Scalemic o-aminobenzamide pyrrolidine derivatives 18a/18b underwent oxidation to give α-methoxylated amide substrates 19a/19b, respectively, in good yields. However, alkylation of the N-acyliminium intermediate 20 with (p-methoxybenzyl)magnesium chloride gave the undesired anti-compounds 22a/22b as the major products. The amide oxidation exhibits good regioselectivity with many unsymmetrical 2-substituted piperidine and pyrrolidine systems. In general, it appears that the larger the C-2 substituent, the greater the methylene/methine H-atom abstraction ratio. A mechanistic rationale for this selectivity is suggested based upon amide rotamer populations. An extension of this methodology can be used to conduct two sequential amide oxidations using readily prepared 2-amino-6-nitrobenzamides such as 68 and 69.
AB - A convenient nonelectrochemical amide oxidation method has been developed. The process involves a cuprous ion-promoted decomposition of o-diazobenzamides like 4, generated in situ from the corresponding o-aminobenzamides, to give N-acyliminium ion intermediate 9 via a 1,5-H-atom transfer, followed by metal-catalyzed oxidation of the resulting α-amidyl radical. The transformation produces α-methoxybenzamides 15 in good yields. An attempt was made to apply this oxidation method to a total synthesis of the alkaloid (-)-anisomycin (16). Scalemic o-aminobenzamide pyrrolidine derivatives 18a/18b underwent oxidation to give α-methoxylated amide substrates 19a/19b, respectively, in good yields. However, alkylation of the N-acyliminium intermediate 20 with (p-methoxybenzyl)magnesium chloride gave the undesired anti-compounds 22a/22b as the major products. The amide oxidation exhibits good regioselectivity with many unsymmetrical 2-substituted piperidine and pyrrolidine systems. In general, it appears that the larger the C-2 substituent, the greater the methylene/methine H-atom abstraction ratio. A mechanistic rationale for this selectivity is suggested based upon amide rotamer populations. An extension of this methodology can be used to conduct two sequential amide oxidations using readily prepared 2-amino-6-nitrobenzamides such as 68 and 69.
UR - http://www.scopus.com/inward/record.url?scp=0001594575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001594575&partnerID=8YFLogxK
U2 - 10.1021/jo961529a
DO - 10.1021/jo961529a
M3 - Article
AN - SCOPUS:0001594575
SN - 0022-3263
VL - 61
SP - 9483
EP - 9493
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 26
ER -