Abstract
The 2D nanosheets of layered inorganic solids prepared by soft-chemical exfoliation reaction can be used as effective building blocks for hybridization with inorganic, organic, bio-, and polymer molecules/nanostructures. In comparison with graphene nanosheets, the 2D inorganic nanosheets boast much higher tunability in their chemical composition and physicochemical properties, leading to the creation of unexpected novel functionalities upon hybridization. Despite such unique and intriguing advantages of inorganic nanosheets, there are still only limited numbers of studies regarding the inorganic nanosheet-based hybrid materials. This Feature Article focuses on fundamental aspects of diverse synthetic strategies of the 2D nanosheet-based nanohybrids such as electrostatically derived reassembling, layer-by-layer deposition, crystal growth on the surface sites of nanosheets, and so on. Also, diverse functionalities of these 2D nanohybrid materials are discussed with an emphasis on the energy and environmental applications such as Li-ion batteries, supercapacitors, photocatalysts, fuel cells, and greenhouse gas capture. A prospect for the exploration of novel inorganic 2D nanosheet-based functional materials is provided along with new strategies to optimize the functionality of 2D inorganic nanosheets and their nanohybrids.
Original language | English |
---|---|
Pages (from-to) | 3847-3863 |
Number of pages | 17 |
Journal | Journal of Physical Chemistry C |
Volume | 118 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2014 Feb 27 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films