Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes

Eugene Lee, Inhwan Kim, Hang Liu, Gilsoo Cho

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

This study aims to measure ECG signals by the AgNW/PU nanoweb electrodes, and, to compare with signals measured by the conventional Ag/AgCl electrodes. Finally, to investigate the usage potential of the AgNW/PU nanoweb as ECG textile electrodes. The ECG textile electrodes were fabricated, using the polyurethane (PU) nanoweb (Pardam, s.r.o., Czech Republic) coated with 1 wt% of silver nanowires (AgNW) dispersed in ethanol (KLK Co., Korea). To measure the ECG signals, eight participants (Male:Female=1:1) were collected, and then, the signals were measured at rest-state and stress-state in anechoic chamber using Lead I method. From the measured ECG signals, heart rate (HR) and R-R intervals were acquired by using MP150 (Biopac system Inc., USA) and Acqknowledge (ver. 4.2, Biopac system Inc., USA), and then, analyzed by using Kubios HRV (ver. 2.0., Biosignal Analysis and Medical Imaging Group, Finland). To examine the morphology of the signals, direct visual evaluation was performed. Also, to statistically compare to the signals, Wilcoxon signed-rank test was conducted by using R statistical language and RStudio (1.0.143 ver., RStudio, Inc., USA). As a result, the ECG waveforms measured by the two different types of electrodes looked similar, especially, QRS-complex, P-wave and T-wave as well as R-peaks properly appeared. Also, there was not a significant difference of HR and RR-intervals measured by the two different types of electrodes. It demonstrated that the new AgNW/PU nanoweb electrodes could perform properly as ECG electrodes.

Original languageEnglish
Pages (from-to)1749-1753
Number of pages5
JournalFibers and Polymers
Volume18
Issue number9
DOIs
Publication statusPublished - 2017 Sept 1

Bibliographical note

Funding Information:
This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2016R1A2B4014668) and the Brain Korea 21 Plus Project of Dept. of Clothing and Textiles, Yonsei University in 2017.

Publisher Copyright:
© 2017, The Korean Fiber Society and Springer Science+Business Media B.V.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes'. Together they form a unique fingerprint.

Cite this