Exploiting Transferable Knowledge for Fairness-Aware Image Classification

Sunhee Hwang, Sungho Park, Pilhyeon Lee, Seogkyu Jeon, Dohyung Kim, Hyeran Byun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


Recent studies have revealed the importance of fairness in machine learning and computer vision systems, in accordance with the concerns about the unintended social discrimination produced by the systems. In this work, we aim to tackle the fairness-aware image classification problem, whose goal is to classify a target attribute (e.g., attractiveness) in a fair manner regarding protected attributes (e.g., gender, age, race). To this end, existing methods mainly rely on protected attribute labels for training, which are costly and sometimes unavailable for real-world scenarios. To alleviate the restriction and enlarge the scalability of fair models, we introduce a new framework where a fair classification model can be trained on datasets without protected attribute labels (i.e., target datasets) by exploiting knowledge from pre-built benchmarks (i.e., source datasets). Specifically, when training a target attribute encoder, we encourage its representations to be independent of the features from the pre-trained encoder on a source dataset. Moreover, we design a Group-wise Fair loss to minimize the gap in error rates between different protected attribute groups. To the best of our knowledge, this work is the first attempt to train the fairness-aware image classification model on a target dataset without protected attribute annotations. To verify the effectiveness of our approach, we conduct experiments on CelebA and UTK datasets with two settings: the conventional and the transfer settings. In the both settings, our model shows the fairest results when compared to the existing methods.

Original languageEnglish
Title of host publicationComputer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers
EditorsHiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, Jianbo Shi
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages17
ISBN (Print)9783030695378
Publication statusPublished - 2021
Event15th Asian Conference on Computer Vision, ACCV 2020 - Virtual, Online
Duration: 2020 Nov 302020 Dec 4

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12625 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference15th Asian Conference on Computer Vision, ACCV 2020
CityVirtual, Online

Bibliographical note

Funding Information:
Acknowledgement. This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3C4A7069370) and Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (Development of framework for analyzing, detecting, mitigating of bias in AI model and training data) under Grant 2019-0-01396 and (Artificial Intelligence Graduate School Program (YONSEI UNIVERSITY)) under Grant 2020-0-01361.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)


Dive into the research topics of 'Exploiting Transferable Knowledge for Fairness-Aware Image Classification'. Together they form a unique fingerprint.

Cite this