Abstract
This paper presents an experiment-based synthetic structural analysis method that combines digital image processing (DIP) and the particle difference method (PDM), which is a strong form-based meshfree method. The proposed method uses images to determine the displacement of deformed specimens, interpolates the displacement onto nodes of the PDM model without meshes or grids, and calculates the kinematic variables. Furthermore, the pixel extraction method for the target area and the method of setting the region of interest for expediting DIP were used during the synthetic structural analysis. A method for effectively expanding the number of tracking points and an improved method for labeling tracking points are also presented. To verify the performance of the analysis, the experimental and numerical analysis results of a three-point bending test on a rubber beam were compared in terms of various mechanical variables as well as with the PDM results of a simulated bending test. It was found that tracking point expansion and adjusting the radius of the domain of influence are advantageous for performing an accurate calculation without losing computational efficiency. It was demonstrated that the synthetic structural analysis effectively overcomes the shortcomings of the conventional experiments and the limitations of pure simulations.
Original language | English |
---|---|
Article number | 8053 |
Pages (from-to) | 1-24 |
Number of pages | 24 |
Journal | Applied Sciences (Switzerland) |
Volume | 10 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2020 Nov 2 |
Bibliographical note
Publisher Copyright:© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Instrumentation
- Engineering(all)
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes