TY - JOUR
T1 - Excited-state energy transfer and ground-state hole/electron hopping in p-phenylene-linked porphyrin dimers
AU - Yang, Sung Ik
AU - Lammi, Robin K.
AU - Seth, Jyoti
AU - Riggs, Jennifer A.
AU - Arai, Toru
AU - Kim, Dongho
AU - Bocian, David F.
AU - Holten, Dewey
AU - Lindsey, Jonathan S.
PY - 1998/11/19
Y1 - 1998/11/19
N2 - The ground- and excited-state properties of a series of p-phenylene-linked porphyrin dimers have been examined using a variety of static and time-resolved spectroscopic techniques. The dimers consist of a zinc porphyrin and a free base (Fb) porphyrin (ZnFbΦ), two zinc porphyrins (Zn2Φ), or two Fb porphyrins (Fb2Φ). In each array, the porphyrins are joined by the p-phenylene linker at one meso position, with the nonlinking meso positions bearing mesityl groups. Three analogous dimers in which the mesityl groups are replaced with pentafluorophenyl groups (F30ZnFbΦ, F30Zn2Φ and F30Fb2Φ) were also synthesized and characterized. The excited-state energy-transfer rate from the photoexcited Zn porphyrin to the Fb porphyrin is (3.5 ps)-1 for ZnFbΦ and (10 ps)-1 for F30ZnFbΦ. The quantum yields of excited-state energy transfer are ≥99% for both complexes. The energy-transfer rates in the p-phenylene-linked dimers are considerably faster than those observed for the analogous dimers containing a diphenylethyne linker ((24 ps)-1, ZnFbU; (240 ps)-1, F30ZnFbU). At these distances, both through bond and through space contributions to the electronic coupling are important. The faster energy-transfer rates in the p-phenylene- versus diarylethyne-linked dimers are attributed to enhanced electronic coupling between the porphyrins in the former dimers arising primarily from the shorter inter-porphyrin separation. The electronic coupling in the p-phenylene-linked dimers is sufficient to support ultrafast energy transfer in both ZnFbΦ and F30ZnFbΦ, but is not so large as to significantly perturb the redox or inherent lowest excited-state photophysical properties of the porphyrin constituents. Electronic perturbations resulting from fluorination have little effect on the energy-transfer rates in the p-phenylene-linked dimers, but the rates of room-temperature ground-state hole/electron hopping processes in the corresponding monocation radicals of the bis-Zn-analogues of the p-phenylene-linked dimers (≥(0.05 μ)-1, [Zn2Φ]+; ≤(2.5 μs)-11, [F30Zn2Φ]+) are significantly influenced by the fluorination-induced changes in the electronic structure. Collectively, these characteristics make these constructs attractive candidates for incorporation into extended multi-porphyrin arrays for a variety of molecular photonics applications.
AB - The ground- and excited-state properties of a series of p-phenylene-linked porphyrin dimers have been examined using a variety of static and time-resolved spectroscopic techniques. The dimers consist of a zinc porphyrin and a free base (Fb) porphyrin (ZnFbΦ), two zinc porphyrins (Zn2Φ), or two Fb porphyrins (Fb2Φ). In each array, the porphyrins are joined by the p-phenylene linker at one meso position, with the nonlinking meso positions bearing mesityl groups. Three analogous dimers in which the mesityl groups are replaced with pentafluorophenyl groups (F30ZnFbΦ, F30Zn2Φ and F30Fb2Φ) were also synthesized and characterized. The excited-state energy-transfer rate from the photoexcited Zn porphyrin to the Fb porphyrin is (3.5 ps)-1 for ZnFbΦ and (10 ps)-1 for F30ZnFbΦ. The quantum yields of excited-state energy transfer are ≥99% for both complexes. The energy-transfer rates in the p-phenylene-linked dimers are considerably faster than those observed for the analogous dimers containing a diphenylethyne linker ((24 ps)-1, ZnFbU; (240 ps)-1, F30ZnFbU). At these distances, both through bond and through space contributions to the electronic coupling are important. The faster energy-transfer rates in the p-phenylene- versus diarylethyne-linked dimers are attributed to enhanced electronic coupling between the porphyrins in the former dimers arising primarily from the shorter inter-porphyrin separation. The electronic coupling in the p-phenylene-linked dimers is sufficient to support ultrafast energy transfer in both ZnFbΦ and F30ZnFbΦ, but is not so large as to significantly perturb the redox or inherent lowest excited-state photophysical properties of the porphyrin constituents. Electronic perturbations resulting from fluorination have little effect on the energy-transfer rates in the p-phenylene-linked dimers, but the rates of room-temperature ground-state hole/electron hopping processes in the corresponding monocation radicals of the bis-Zn-analogues of the p-phenylene-linked dimers (≥(0.05 μ)-1, [Zn2Φ]+; ≤(2.5 μs)-11, [F30Zn2Φ]+) are significantly influenced by the fluorination-induced changes in the electronic structure. Collectively, these characteristics make these constructs attractive candidates for incorporation into extended multi-porphyrin arrays for a variety of molecular photonics applications.
UR - http://www.scopus.com/inward/record.url?scp=0001681448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001681448&partnerID=8YFLogxK
U2 - 10.1021/jp982729o
DO - 10.1021/jp982729o
M3 - Article
AN - SCOPUS:0001681448
SN - 1520-6106
VL - 102
SP - 9426
EP - 9436
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 47
ER -