Abstract
The purpose of this study is to quantitatively evaluate hood leakage by measuring face velocity and to introduce screening tools with smoke tubes and smoke matches for hood leakage during a volume generating process that simulates a hot process, defined here as any operation producing high temperature gases. A literature search reveals that during the last couple of decades only Johnson et al. reported a quantitative linear relationship between thermal loading and breathing zone trace gas concentrations using ASHRAE 110-1995 method. Hot processes may well be the most common and least recognized of the operational factors able to cause fume hoods to leak. Smoke tests and face velocity tests were conducted for hood performance testing. Smoke tests were executed by means of smoke tubes and smoke matches as screening tools for hood leakage. Face velocity tests were conducted at 16 points arranged to represent equal areas of the hood face when the sash was fully opened. Through smoke tests and a volume generating process, unexpected leakage above the fume hood was found through smoke testing and at the face of fume hood. These results suggest that when a hood is operated with any operation producing high temperature gases, leakage can be caused. This study shows that if there is any fume hood experiment with high temperature or able to cause fume hood to leak, the fume hood must be controlled with stable face velocity using a damper to protect workers and engineers from hazardous gases released within it.
Original language | English |
---|---|
Publication status | Published - 2007 |
Event | ASSE Professional Development Conference 2007 - Orlando, United States Duration: 2007 Jun 24 → 2007 Jun 27 |
Other
Other | ASSE Professional Development Conference 2007 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 07/6/24 → 07/6/27 |
Bibliographical note
Publisher Copyright:© 2007 American Society of Safety Engineers (ASSE). All rights reserved.
All Science Journal Classification (ASJC) codes
- Safety, Risk, Reliability and Quality