TY - JOUR
T1 - Evaluation of a rapid molecular drug-susceptibility test for tuberculosis
AU - Xie, Yingda L.
AU - Chakravorty, Soumitesh
AU - Armstrong, Derek T.
AU - Hall, Sandra L.
AU - Via, Laura E.
AU - Song, Taeksun
AU - Yuan, Xing
AU - Mo, Xiaoying
AU - Zhu, Hong
AU - Xu, Peng
AU - Gao, Qian
AU - Lee, Myungsun
AU - Lee, Jongseok
AU - Smith, Laura E.
AU - Chen, Ray Y.
AU - Joh, Joon Sung
AU - Cho, Young Soo
AU - Liu, Xin
AU - Ruan, Xianglin
AU - Liang, Lili
AU - Dharan, Nila
AU - Cho, Sang Nae
AU - Barry, Clifton E.
AU - Ellner, Jerrold J.
AU - Dorman, Susan E.
AU - Alland, David
N1 - Publisher Copyright:
Copyright © 2017 Massachusetts Medical Society.
PY - 2017/9/14
Y1 - 2017/9/14
N2 - BACKGROUND Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid. METHODS We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/ RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions. RESULTS Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater. CONCLUSIONS This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis.
AB - BACKGROUND Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid. METHODS We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/ RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions. RESULTS Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater. CONCLUSIONS This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis.
UR - http://www.scopus.com/inward/record.url?scp=85029577241&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029577241&partnerID=8YFLogxK
U2 - 10.1056/NEJMoa1614915
DO - 10.1056/NEJMoa1614915
M3 - Article
C2 - 28902596
AN - SCOPUS:85029577241
SN - 0028-4793
VL - 377
SP - 1043
EP - 1054
JO - New England Journal of Medicine
JF - New England Journal of Medicine
IS - 11
ER -