Evaluating robustness of deep image super-resolution against adversarial attacks

Jun Ho Choi, Huan Zhang, Jun Hyuk Kim, Cho Jui Hsieh, Jong Seok Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

56 Citations (Scopus)

Abstract

Single-image super-resolution aims to generate a high-resolution version of a low-resolution image, which serves as an essential component in many image processing applications. This paper investigates the robustness of deep learning-based super-resolution methods against adversarial attacks, which can significantly deteriorate the super-resolved images without noticeable distortion in the attacked low-resolution images. It is demonstrated that state-of-the-art deep super-resolution methods are highly vulnerable to adversarial attacks. Different levels of robustness of different methods are analyzed theoretically and experimentally. We also present analysis on transferability of attacks, and feasibility of targeted attacks and universal attacks.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages303-311
Number of pages9
ISBN (Electronic)9781728148038
DOIs
Publication statusPublished - 2019 Oct
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: 2019 Oct 272019 Nov 2

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period19/10/2719/11/2

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Evaluating robustness of deep image super-resolution against adversarial attacks'. Together they form a unique fingerprint.

Cite this