Abstract
Targeted therapy based on protein-drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C-terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR-specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody-drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody-drug conjugates in human plasma, negligible off-target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.
Original language | English |
---|---|
Pages (from-to) | 12020-12024 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 54 |
Issue number | 41 |
DOIs | |
Publication status | Published - 2015 Oct 1 |
Bibliographical note
Publisher Copyright:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)