Abstract
Dry reforming of methane at low temperatures of 400 ∼ 700 °C is examined by using conventional Ni/Al2O3 catalyst and spinel-derived Ni catalyst anchored on aluminum oxide through powder-based solid-state reaction. The spinel-derived Ni catalyst exhibits uniform particle distribution with a size of 10 nm (10 times smaller than the conventional Ni/Al2O3 catalyst) and the highest catalytic performance under all operating conditions with apparent activation energies of 42.51 kJ/mol for CH4 conversion and 45.39 kJ/mol for CO2 conversion. Kinetics analysis elucidates that the conventional Ni/Al2O3 catalyst changes its rate-limiting factor from diffusion limitation to kinetics limitation with decreasing temperature near 550 °C. In contrast, the spinel-derived Ni catalyst has a single rate-limiting factor of diffusion limitation at all temperatures avoiding surface kinetics limitation. In addition, it is shown that the spinel-derived Ni catalyst exhibits better stability than the conventional Ni/Al2O3 catalyst, attributed to the enhanced interaction between active Ni particles and Al2O3 support.
Original language | English |
---|---|
Article number | 136978 |
Journal | Chemical Engineering Journal |
Volume | 446 |
DOIs | |
Publication status | Published - 2022 Oct 15 |
Bibliographical note
Publisher Copyright:© 2022
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering