Abstract
We report the effect of Y2O3 passivation by atomic layer deposition (ALD) using various oxidants, such as H2O, O2 plasma, and O3, on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (Vth) was observed in the case of the TFT subjected to the H2O-ALD Y2O3 process; this shift was caused by a donor effect of negatively charged chemisorbed H2O molecules. In addition, degradation of the IGZO TFT device performance after the O2 plasma-ALD Y2O3 process (field-effect mobility (μ) = 8.7 cm2/(V·s), subthreshold swing (SS) = 0.77 V/dec, and Vth = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O3-ALD Y2O3 process led to enhanced device stability under light illumination (ΔVth = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔVth = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O3-ALD Y2O3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.
Original language | English |
---|---|
Pages (from-to) | 2143-2150 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2018 Jan 17 |
Bibliographical note
Funding Information:This work was supported by Air Liquide Laboratories Korea, Seoul, South Korea, as a precursor supplier. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. NRF-2017R1C1B5076821) and the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2016M3A6A6930869).
Publisher Copyright:
© 2017 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)