Enhanced Hydrogen-Storage Capacity and Structural Stability of an Organic Clathrate Structure with Fullerene (C60) Guests and Lithium Doping

Yesol Woo, Byeong Soo Kim, Jong Won Lee, Jeasung Park, Minjun Cha, Satoshi Takeya, Junhyuck Im, Yongjae Lee, Tae In Jeon, Hyeonhu Bae, Hoonkyung Lee, Sang Soo Han, Byung Chul Yeo, Dongseon Kim, Ji Ho Yoon

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

An effective combination of host and guest molecules in a framework type of architecture can enhance the structural stability and physical properties of clathrate compounds. We report here that an organic clathrate compound consisting of a fullerene (C60) guest and a hydroquinone (HQ) host framework shows enhanced hydrogen-storage capacity and good structural stability under pressures and temperatures up to 10 GPa and 438 K, respectively. This combined structure is formed in the extended β-type HQ clathrate and admits 16 hydrogen molecules per cage, leading to a volumetric hydrogen uptake of 49.5 g L-1 at 77 K and 8 MPa, a value enhanced by 130% compared to that associated with the β-type HQ clathrate. A close examination according to density functional theory calculations and grand canonical Monte Carlo simulations confirms the synergistic combination effect of the guest-host molecules tailored for enhanced hydrogen storage. Moreover, the model simulations demonstrate that the lithium-doped HQ clathrates with C60 guests reveal exceptionally high hydrogen-storage capacities. These results provide a new playground for additional fundamental studies of the structure-property relationships and migration characteristics of small molecules in nanostructured materials.

Original languageEnglish
Pages (from-to)3028-3039
Number of pages12
JournalChemistry of Materials
Volume30
Issue number9
DOIs
Publication statusPublished - 2018 May 8

Bibliographical note

Funding Information:
This work was supported by the Midcareer Research Program (2015003772) through the National Research Foundation of Korea (NRF) grant founded by the Ministry of Science and ICT (MSIT). Synchrotron XRD measurements were performed at the Pohang Accelerator Laboratory supported by MSIT and Pohang University of Science and Technology (POSTECH). Solid-state NMR data were acquired at the Western Seoul Center of KBSI.

Publisher Copyright:
© 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Enhanced Hydrogen-Storage Capacity and Structural Stability of an Organic Clathrate Structure with Fullerene (C60) Guests and Lithium Doping'. Together they form a unique fingerprint.

Cite this