TY - JOUR
T1 - Engraftment and regenerative effects of bone marrow stromal cell transplantation on damaged rat olfactory mucosa
AU - Kwon, Jang Woo
AU - Jo, Hyo Gyeong
AU - Park, Sang Man
AU - Ku, Cheol Hyo
AU - Park, Dong Joon
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - To develop a new therapeutic method to treat olfactory deficits, we investigated the engraftment and regenerative effects of transplanted bone marrow stromal cells (BMSCs) on damaged rat olfactory mucosa. To induce olfactory nerve degeneration, one side of the olfactory mucosa of Sprague–Dawley rats was damaged via Triton X-100 irrigation. Phosphate-buffered saline containing syngeneic BMSCs was injected into the olfactory mucosa for transplantation. PKH fluorescent cell dye labeling of BMSCs was used to monitor the transplanted cells. After transplantation of BMSCs, the thickness and regeneration of olfactory mucosa were analyzed using hematoxylin-eosin (H&E) staining. S100 immunohistochemical staining was used to measure nerve sheath regeneration. The increase in NGF (nerve growth factor) level in the olfactory mucosa was measured by Western blot analysis. Transplanted bone marrow stromal cells were engrafted to the lamia propria of damaged mucosa. The mean time for normalization of thickness and morphological recovery of the olfactory mucosa was 4 weeks in the therapeutic group and 9 weeks in the control group. S100 immunoreactivity was higher on the BMSC-treated side than on the control side. During regeneration, the expression of NGF increased in the olfactory mucosa of the experimental group. Based on these results, BMSC transplantation accelerated regeneration of olfactory mucosa damaged by Triton X-100, and NGF may be essential to this regenerative process.
AB - To develop a new therapeutic method to treat olfactory deficits, we investigated the engraftment and regenerative effects of transplanted bone marrow stromal cells (BMSCs) on damaged rat olfactory mucosa. To induce olfactory nerve degeneration, one side of the olfactory mucosa of Sprague–Dawley rats was damaged via Triton X-100 irrigation. Phosphate-buffered saline containing syngeneic BMSCs was injected into the olfactory mucosa for transplantation. PKH fluorescent cell dye labeling of BMSCs was used to monitor the transplanted cells. After transplantation of BMSCs, the thickness and regeneration of olfactory mucosa were analyzed using hematoxylin-eosin (H&E) staining. S100 immunohistochemical staining was used to measure nerve sheath regeneration. The increase in NGF (nerve growth factor) level in the olfactory mucosa was measured by Western blot analysis. Transplanted bone marrow stromal cells were engrafted to the lamia propria of damaged mucosa. The mean time for normalization of thickness and morphological recovery of the olfactory mucosa was 4 weeks in the therapeutic group and 9 weeks in the control group. S100 immunoreactivity was higher on the BMSC-treated side than on the control side. During regeneration, the expression of NGF increased in the olfactory mucosa of the experimental group. Based on these results, BMSC transplantation accelerated regeneration of olfactory mucosa damaged by Triton X-100, and NGF may be essential to this regenerative process.
UR - http://www.scopus.com/inward/record.url?scp=84960090354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960090354&partnerID=8YFLogxK
U2 - 10.1007/s00405-016-3957-x
DO - 10.1007/s00405-016-3957-x
M3 - Article
C2 - 26940801
AN - SCOPUS:84960090354
SN - 0937-4477
VL - 273
SP - 2585
EP - 2590
JO - European Archives of Oto-Rhino-Laryngology
JF - European Archives of Oto-Rhino-Laryngology
IS - 9
ER -