Abstract
Indolocarbazole-Pyridine (IP) hybrid foldamers have been known to adopt a helical conformation with an internal tubular cavity wherein water molecules are tightly packed via the formation of multiple cooperative hydrogen bonds. In order to develop IP foldamer-based receptors for ions and molecules other than water molecules, we herein prepare two modified IP foldamers 2 and 3 that contain a pyrrole and an inverted pyridine in the middle of the strands, respectively, instead of the original pyridine unit. Such site-specific modification significantly disrupts the hydrogen-bonding network between the entrapped water molecules and the interior of the cavity, thus allowing for binding two dihydrogenphosphate ions as a cyclic dimer inside the cavity as demonstrated by 1 H NMR spectroscopy and X-ray crystal structure analysis. The crystal structures of the two complexes (H 2 PO 4 - ) 2 ⊂ 2 and (H 2 PO 4 - ) 2 ⊂ 3 are very similar to each other, with twelve hydrogen bonds between the bound dihydrogenphosphate dimer and the interior functional groups, indolocarbazole NH protons, pyridine nitrogen atoms and terminal OH protons in the helical tubular cavity.
Original language | English |
---|---|
Pages (from-to) | 299-303 |
Number of pages | 5 |
Journal | Organic Chemistry Frontiers |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 Feb 7 |
Bibliographical note
Funding Information:This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2015R1A2A1A10053607 & 2018R1A2A1A05077048). The authors acknowledge the Pohang Accelerator Laboratory (PAL) for beam line use (2018-1st-2D-012).
Publisher Copyright:
© 2019 the Partner Organisations.
All Science Journal Classification (ASJC) codes
- Organic Chemistry