Electronic structure of electron-doped Sm1.86 Ce0.14 Cu O4: Strong pseudogap effects, nodeless gap, and signatures of short-range order

S. R. Park, Y. S. Roh, Y. K. Yoon, C. S. Leem, J. H. Kim, B. J. Kim, H. Koh, H. Eisaki, N. P. Armitage, C. Kim

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)

Abstract

Angle-resolved photoemission spectroscopy (ARPES) data from the electron-doped cuprate superconductor Sm1.86 Ce0.14 Cu O4 show a much stronger pseudogap or hot-spot effect than that observed in other optimally doped n -type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d -wave superconductivity in this compound would be of the nodeless gap variety. The gross features of the Fermi surface topology and low-energy electronic structure are found to be well described by reconstruction of bands by a 2×2 order. Comparison of the ARPES and optical data from the same sample shows that the pseudogap energy observed in optical data is consistent with the interband transition energy of the model, allowing us to have a unified picture of pseudogap effects. However, the high-energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short-range ordering or inhomogeneous state.

Original languageEnglish
Article number060501
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume75
Issue number6
DOIs
Publication statusPublished - 2007 Feb 1

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Electronic structure of electron-doped Sm1.86 Ce0.14 Cu O4: Strong pseudogap effects, nodeless gap, and signatures of short-range order'. Together they form a unique fingerprint.

Cite this