Electrochemical performance and long-term durability of a 200 W-class solid oxide regenerative fuel cell stack

Jongsup Hong, Hyo Jin Kim, Sun Young Park, Jin Ho Lee, Su Byung Park, Jong Ho Lee, Byung Kook Kim, Hae Joon Je, Jae Yuk Kim, Kyung Joong Yoon

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The electrochemical performance and durability of a 200 W-class solid oxide regenerative fuel cell (SORFC) stack are investigated for cyclic mode-changing and long-term operation. Three unit cells (10 cm × 10 cm), each based on a Ni - yttria-stabilized zirconia (YSZ) fuel electrode, a scandia-stabilized zirconia (ScSZ) electrolyte and a Sr-doped LaCoO3 (LSC) - gadolinia-doped ceria (GDC) air electrode, are used for the stack development. Delamination of the air electrode is suppressed by using a mixed ionic- and electronic-conducting air electrode with no oxygen excess non-stoichiometry, and gas leakage is minimized by using novel glass-ceramic composite sealants. Excellent electrochemical performance is achieved in a single cell level by minimizing the ohmic and electrode polarizations, and the three-cell stack is successfully configured without major performance loss associated with electrical contacts, gas supply or sealing. Stable operation is confirmed at a thermal neutral voltage for 1000 h in the solid oxide electrolysis cell (SOEC) mode, and the periodic change of the operation mode between the solid oxide fuel cell (SOFC) and SOEC is found to accelerate the performance degradation. The effect of cyclic mode-changing on the stability of the SORFC stacks is discussed in detail based on the observations from the post-mortem microstructural analysis.

Original languageEnglish
Pages (from-to)20819-20828
Number of pages10
JournalInternational Journal of Hydrogen Energy
Volume39
Issue number35
DOIs
Publication statusPublished - 2014 Dec 3

Bibliographical note

Funding Information:
The authors thank the all of the members of the SOFC Team at Ssanyong Materials for assistance in the cell fabrication. This research was financially supported by the Institutional Research Program of the Korea Institute of Science and Technology ( 2E24691 ) and the Fundamental Research and Development Program for Core Technology of Materials, funded by the Ministry of Trade, Industry and Energy ( 2MR0910 ).

Publisher Copyright:
© 2014 Hydrogen Energy Publications, LLC. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Electrochemical performance and long-term durability of a 200 W-class solid oxide regenerative fuel cell stack'. Together they form a unique fingerprint.

Cite this